37 research outputs found

    Characterising poroelastic materials in the ultrasonic range - A Bayesian approach

    Full text link
    Acoustic fields scattered by poroelastic materials contain key information about the materials' pore structure and elastic properties. Therefore, such materials are often characterised with inverse methods that use acoustic measurements. However, it has been shown that results from many existing inverse characterisation methods agree poorly. One reason is that inverse methods are typically sensitive to even small uncertainties in a measurement setup, but these uncertainties are difficult to model and hence often neglected. In this paper, we study characterising poroelastic materials in the Bayesian framework, where measurement uncertainties can be taken into account, and which allows us to quantify uncertainty in the results. Using the finite element method, we simulate measurements where ultrasonic waves are incident on a water-saturated poroelastic material in normal and oblique angles. We consider uncertainties in the incidence angle and level of measurement noise, and then explore the solution of the Bayesian inverse problem, the posterior density, with an adaptive parallel tempering Markov chain Monte Carlo algorithm. Results show that both the elastic and pore structure parameters can be feasibly estimated from ultrasonic measurements.Comment: Published in JSV. https://doi.org/10.1016/j.jsv.2019.05.02

    Nonlocal dynamics of dissipative phononic fluids

    Get PDF
    We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013)WAMOD90165-212510.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.United States. Office of Naval Research (N00014-13-1-0631

    Propagation ultrasonore dans des gels modélisant les tissus biologiques

    Get PDF
    Dans le cadre de l'application à la destruction des tumeurs cancéreuses par ultrasons de forte intensité (projet ANR cavitherapus), nos travaux portent sur l'étude de la propagation des ondes ultrasonores dans des gels qui se comportent comme des tissus biologiques. Afin de valider un modèle\ud de propagation acoustique, une étude expérimentale des propriétés acoustiques et thermiques de différents gels est menée

    Diffusion multiple en fluide visco-thermique, cas du cristal phononique Ă  deux dimensions

    No full text
    An accurate modelization of acoustic waves propagation and absorption by porous media is of great interest notably due to their numerous applications in industry. During the past years, important progresses lead to acoustic behavior description of porous media in the long wavelength domain (audible frequencies) by means of classical homogenization theory. In this domain, the description is assumed considering important visco-thermal effects which occur inside the medium and so, gives its absorption ability. When the wavelength reduces enough (ultrasonic frequencies), multiple scattering effects appear due to interactions between microstructure and acoustic waves. These effects are not considered by classical models owing to geometrical complexity of porous media at microstructure scale.For this reason, the study is restricted to the case of a two-dimensional periodic lattice containing rigid cylinders (aluminium) surrounded with a visco-thermal fluid (air). This simple geometry, also called "phononic crystal", can exhibits frequency regions where propagation is forbidden (band gaps). This well known phenomenon arises from multiple scattering effects (interferences). Band gaps locations and widths are predicted by many numerical methods taking into account multiple scattering without dissipation. In this work, the sizeable consideration of dissipation effects are discussed. Extensions of multiple scattering models allowing for visco-thermal effects are introduced. On the one hand, these extensions underline dissipation effects impact on propagation at high frequencies. For that, comparisons are performed between transmission coefficients theoretically predicted and experimentally measured on different samples. On the other hand, a numerical study on the transition between a visco-thermal regime (entirely) and multiple scattering effects emergence when wavelength reduces is carried out. This analysis points out the high frequency limit of classical homogenization theory for porous media characterization.Une modélisation précise de la propagation et de l'absorption d'ondes acoustiques dans les matériaux poreux est un enjeu majeur notamment dans la lutte contre les nuisances sonores.Des modèles issus de l'homogénéisation et permettant de décrire le comportement de telsmatériaux ont été développés depuis plusieurs années, qui s'intéressent à leur capacité d'absorption résultant d'effets visco-thermiques importants aux grandes longueurs d'onde (fréquences audio). Lorsque les longueurs d'ondes diminuent suffisamment (fréquences ultrasonores), des effets de diffusion multiple, entre la microstructure du matériau et l'onde acoustique le traversant, interviennent. Ces effets, qui ne sont pas considérés par les modèles classiques, ne sont pas faciles à introduire en raison de la complexité géométrique des matériaux poreux (à l'échelle microscopique).Pour cette raison, nous nous sommes limités à considérer un réseau périodique à deux dimensions constitué de cylindres rigides (aluminium) entourés d'un fluide dissipatif (air). Cette géométrie simple, aussi appelée "cristal phononique", présente des domaines fréquentiels dans lesquels aucune onde ne peut se propager (bandes interdites). Ce phénomène, connu et largement étudié, résulte d'effets de diffusion multiple (interférences). Les positions et les largeurs des bandes interdites sont prédites par de nombreuses méthodes de calcul tenant compte des effets de diffusion multiple en fluide non dissipatif. Dans ce travail, le problème de l'importance, non négligeable, des effets dissipatifs est soulevé. Des extensions permettant d'intégrer les effets visco-thermiques dans un modèle de diffusion multiple sont proposées. Elles permettent dans un premier temps, de mettre en évidence l'influence de ces effets dissipatifs sur la propagation dans un régime hautes fréquences. Pour cela, une comparaison entre les coefficients de transmission prédits et ceux, obtenus expérimentalement sur différents échantillons est réalisée. Dans un second temps, une étude numérique permet d'analyser la transition entre un domaine fréquentiel dominé par des effets visco-thermiques (exclusivement) et l'émergence des effets de diffusion multiple lorsque la fréquence augmente. Cette analyse montre notamment la limite de validité des modèles classiques issus de la théorie d'homogénéisation, pour la caractérisation acoustique des matériaux poreux

    Diffusion multiple en fluide visco-thermique, cas du cristal phononique Ă  deux dimensions

    No full text
    Une modélisation précise de la propagation et de l'absorption d'ondes acoustiques dans les matériaux poreux est un enjeu majeur notamment dans la lutte contre les nuisances sonores. Des modèles issus de l"homogénéisation et permettant de décrire le comportement de tels matériaux ont été développés depuis plusieurs années, qui s'intéressent à leur capacité d'absorption résultant d'effets visco-thermiques importants aux grandes longueurs d'onde (fréquences audio). Lorsque les longueurs d'ondes diminuent suffisamment (fréquences ultrasonores), des effets de diffusion multiple, entre la microstructure du matériau et l'onde acoustique le traversant, interviennent. Ces effets, qui ne sont pas considérés par les modèles classiques, ne sont pas faciles à introduire en raison de la complexité géométrique des matériaux poreux (à l'échelle microscopique). Pour cette raison, nous nous sommes limités à considérer un réseau périodique à deux dimensions constitué de cylindres rigides (aluminium) entourés d'un fluide dissipatif (air). Cette géométrie simple, aussi appelée cristal phononique, présente des domaines fréquentiels dans lesquels aucune onde ne peut se propager (bandes interdites). Ce phénomène, connu et largement étudié, résulte d'effets de diffusion multiple (interférences). Les positions et les largeurs des bandes interdites sont prédites par de nombreuses méthodes de calcul tenant compte des effets de diffusion multiple en fluide non dissipatif. Dans ce travail, le problème de l'importance, non négligeable, des effets dissipatifs est soulevé. Des extensions permettant d'intégrer les effets visco-thermiques dans un modèle de diffusion multiple sont proposées. Elles permettent dans un premier temps, de mettre en évidence l'influence de ces effets dissipatifs sur la propagation dans un régime hautes fréquences. Pour cela, une comparaison entre les coefficients de transmission prédits et ceux, obtenus expérimentalement sur différents échantillons est réalisée. Dans un second temps, une étude numérique permet d'analyser la transition entre un domaine fréquentiel dominé par des effets visco-thermiques (exclusivement) et l'émergence des effets de diffusion multiple lorsque la fréquence augmente. Cette analyse montre notamment la limite de validité des modèles classiques issus de la théorie d'homogénéisation, pour la caractérisation acoustique des matériaux poreux.An accurate modelization of acoustic waves propagation and absorption by porous media is of great interest notably due to their numerous applications in industry. During the past years, important progresses lead to acoustic behavior description of porous media in the long wavelength domain (audible frequencies) by means of classical homogenization theory. In this domain, the description is assumed considering important visco-thermal effects which occur inside the medium and so, gives its absorption ability. When the wavelength reduces enough (ultrasonic frequencies), multiple scattering effects appear due to interactions between microstructure and acoustic waves. These effects are not considered by classical models owing to geometrical complexity of porous media at microstructure scale. For this reason, the study is restricted to the case of a two-dimensional periodic lattice containing rigid cylinders (aluminium) surrounded with a visco-thermal fluid (air). This simple geometry, also called phononic crystal, can exhibits frequency regions where propagation is forbidden (band gaps). This well known phenomenon arises from multiple scattering effects (interferences). Band gaps locations and widths are predicted by many numerical methods taking into account multiple scattering without dissipation. In this work, the sizeable consideration of dissipation effects are discussed. Extensions of multiple scattering models allowing for visco-thermal effects are introduced. On the one hand, these extensions underline dissipation effects impact on propagation at high frequencies. For that, comparisons are performed between transmission coefficients theoretically predicted and experimentally measured on different samples. On the other hand, a numerical study on the transition between a visco-thermal regime (entirely) and multiple scattering effects emergence when wavelength reduces is carried out. This analysis points out the high frequency limit of classical homogenization theory for porous media characterization.LE MANS-BU Sciences (721812109) / SudocSudocFranceF

    Ultrasonic Measurements by Means of Continuous Waves in Porous Materials Saturated with Air

    No full text
    The study of porous materials has always been of great interest. Several characterization methods have been developed by means of ultrasonic waves, mainly because of their non-invasive behavior. A typical set-up involves transmission and reflection measurements through the test material using pulse signals. The received echoes are analyzed and compared with analytical models in order to estimate some specific acoustic properties of the sample itself. The main drawback of this approach is the low signal-to-noise ratio recorded when testing highly attenuating materials. This disadvantage is even more pronounced for measurements in air. The present work aims to overcome these limitations, replacing the excitation signals by continuous muti-harmonic waves. These signals have been developed by optimizing the phase of each harmonic, resulting in a low crest factor and consequently in a better signal-to-noise ratio [1,2]. Moreover their frequency content can be easily adapted to the different transducers used during the test. The method has been used to test a foam saturated with air, performing ultrasonic measurements in transmission/reflection, at different angles of incidence. The results show a significant improvement of the measurements, facilitating the estimation of the foam acoustics properties.</p
    corecore